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Elastic—plastic thermal stresses and deformation
of short-fibre composites
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A micromechanics model is proposed to analyse residual stresses and deformations that develop
in short-fibre composites upon an applied uniform temperature change. The model is based on
Eshelby’s equivalent inclusion method and treats the interaction among fibres at finite volume
fractions through the Mori-Tanaka mean field theory. The model treats the matrix as an
elastic/plastic material while the fibre is elastic and is able to account for the effects of the
composite microgeometry. To this end, the effects of misoriented short fibres, the orientation of
which is described by a density distribution function, are considered. Numerical results obtained
from the proposed model indicate that the misorientation of short fibres has a significant effect on

both the stress and deformation behaviour of short-fibre composites.

1. Introduction

The thermoelastic/inelastic behaviour of short-fibre
composites is of considerable interest in the assess-
ment of these materials as candidates for high-temper-
ature structural applications such as jet-engine turbine
components. For high-temperature applications, both
the stress and deformation of a short-fibre composite
are of importance. A primary factor contributing to
the stress and deformation is the composite micro-
geometry, which in turn is greatly affected by process-
ing techniques. Fibres, intended to be aligned, will in
general become misoriented during processing, and
the amount of fibre misorientation is generally a func-
tion of the processing technique. The purpose of this
work is to investigate the effect of microgeometry on
the thermal stress and deformation of a short-fibre
composite. To this end, a micromechanics model is
developed to predict the stress and deformation of
a short-fibre composite subjected to an applied uni-
form thermal load.

This investigation of the effects of the micro-
geometry on the stress and deformation behavior of
a short-fibre composite is motivated in part by the
belief that advances in image processing and analysis
techniques will soon make possible the rapid and
accurate characterization of the three dimensional
microgeometry of a short-fibre composite. With the
knowledge of the effects of the microgeometry on the
thermomechanical performance of a short-fibre com-
posite, such characterization could be readily applied
as a quality control measure in a production environ-
ment.

With regard to the microgeometry, this work con-
siders two important aspects: the shape and misorien-
tation of short fibres. The analytical model is
developed within the framework of the equivalent
inclusion idea of Eshelby [1] and accounts for the

0022-2461 © 1994 Chapman & Hall

interaction among misoriented short fibres through
the mean-field theory of Mori & Tanaka [2]. The
general applicability of the proposed model is demon-
strated, as it is applied to determine thermal residual
stresses and thermal expansion coefficients in the elas-
tic and elastic-plastic regimes.

The modelling of elastic thermal residual stresses
and thermal expansion coefficients (CTEs) of com-
posite materials has received considerable attention in
the literature. The key works with regard to thermal
expansion of composite materials are those of Levin
[3] and Rosen & Hashin [4], who derived exact
connections between the effective thermal expansion
coefficients and elastic moduli of elastic composite
materials. The analysis of particular composite micro-
structures, however, is primarily devoted to simpler
microstructural geometries. For example, spherical
particulate [5-7] and aligned continuous fibre
[8,9] reinforced composites have received extensive
research. Eshelby’s equivalent inclusion method has
been applied to model short-fibre composites
containing aligned spheroidal fibres [10-12]. The
effect of misoriented short fibres in a composite has
also been analysed with regard to thermal stresses
[13] and elastic CTE [14, 15].

With regard to the elastic—plastic behaviour, many
analyses have been directed toward composites under
the influence of applied mechanical and thermal loads,
to predict properties such as yield strength, work
hardening rate, thermal expansions, and the flow be-
haviour of short-fibre composites [16-187]. Hysteresis
experienced upon cyclic thermal loading has been
considered by Wakashima et al. [19] who modelled
the elastic—plastic deformations of composites rein-
forced by aligned thin discs or continuous fibres.

In this work, fundamental ideas regarding mis-
oriented short-fibre composites that are utilized
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routinely in this work are presented in Section 2. In
Section 3, approximate expressions for the thermal
residual stresses in a misoriented short-fibre com-
posite are obtained for both an elastic and elastic—
plastic deforming matrix. The thermal expansion coef-
ficients of the same misoriented short-fibre composite
‘in both the elastic and elastic—plastic regimes are
presented in Section 4. The analysis is strictly valid
only for monotonic loading, but can be applied in an
incremental manner to general loading. The utility of
the proposed model is exhibited in Section § as nu-
merical results are presented for some metal matrix
composites of practical interest. Finally concluding
remarks are made in Section 6.

2. Misoriented short-fibre composites
In the following analysis, the residual stress and defor-
mation of a misoriented short-fibre composite
(MSFC) will be obtained. It is thus desirable to briefly
review some general concepts regarding the orienta-
tion of fibres in a composite and the application of
these concepts to MSFCs. It is first noted that the
term misoriented may be misleading, in that it implies
that the fibres in a composite should be oriented in
some prescribed manner, but are not. A MSFC may
well contain misoriented fibres due to imperfections in
processing technigues; however, the existence of mis-
oriented fibres may be by design, i.e. to improve the
composite properties in preferred directions.

In the analysis of a MSFC it is necessary to consider
the auxiliary problem of an infinite matrix in which
a short fibre is embedded at some general orientation
(Fig. 1). The subsequent analysis is most easily facilit-
ated by defining two coordinate systems; a local
coordinate system (x7, X3, x3) in which the x5 axis
coincides with the axis of a representative fibre and
a global coordinate system (x;, x,, x3). The local and
global coordinate systems are related by the trans-
formation:

x=Yx x=Y'-x 2.1

where Y is a second-order tensor, the components of
which are functions of the spherical polar angles 6 and
. It will be necessary to determine the average of
a second-order tensor (typically the stress and strain)

Figure 1 Misoriented short-fibre composite system. (a) Domain of
the analytical model, (b) definition of the coordinate system used.
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over the domain consisting of all fibres. The deter-
mination of this quantity is two-fold and consists of (a)
the computation of the orientation dependent average
strain in a single fibre, and (b) the subsequent average
of this quantity over all possible fibre orientations.
The distribution of possible fibre orientations is de-
fined by the use of a density distribution function,
p(B, @) where 8 and ¢ are the angles of a spherical
polar coordinate system. Physically, the distribution
function, p(9, ©), is a description of the number of
fibres intersecting the surface of a unit sphere.

In this work, two modes of fibres misorientation
will be considered; two-dimensional in-plane, and
three-dimensional axisymmetric. These are applicable
to composites produced by compression moulding
and extrusion, and allow the simulation of composites
containing fibres randomly distributed ‘in-plane’ but
misoriented in the ‘thickness’ direction. For 2-D in-
plane misorientation, all fibres are confined to the
X,~X3 plane, and for 3-D axisymmetric misorientation
all fibres are uniformly distributed over the 2n range
of . Thus for each of these two modes of misorienta-
tion, p(0, ) is reduced to a function of 6 only. For
each mode of misorientation, two distribution func-
tions are considered: uniform, p(8) = p, and cosine-
type, p(8) = pocos(ab). The cosine-type distribution is
used to simulate a normal distribution while allowing
the closed form integration over the finite range of the
distribution. Each distribution function is assumed to
be bounded by the cut-off angle, + 8, such that all
fibres lie in the range — B <0< + B. Due to the
normalization requirement of p(6), py and a are func-
tions of the cut-off angle alone [13].

The principle use of the distribution functions is to
perform the weighted integration (or averaging) of
a quantity F(, ¢) over the domain of all fibres. To this
end, F(6,¢) is first integrated over the domain of
a single fibre, the result of which is orientation-
dépendent. This orientation-dependent quantity .is
then integrated (averaged) over all possible fibre ori-
entations. In ‘particular, the following relation will
frequently be used:

rn /2<F(9, ¢)>p(0)sin6d0do
0

° 21 /2
J va p(0)sin0d6dd
e 22)

1
— | F®,@)dV =
VDL( o)

where the integral over Q is over the domain consist-
ing of all fibres and the volume of the composite, Vp,
has been defined by:

21 pnj2
J J p(0) Vsin 0d0 do
e 0 0
Vo Vo

(2.3)

In Equation 2.3, V' is the volume of a single fibre, Vg is
the volume of the domain of all fibres, f is the volume
fraction of fibres, and (F(6, ¢)) is the volume average
of F(8, @) over a single fibre. In the following analysis,
quantities similar to the left hand side of Equation 2.2
will routinely be evaluated in this manner.



3. Thermal residual stresses

3.1. Elastic analysis

The domain of the analytical model consists of an
infinite elastic body containing misoriented short
fibres, as shown in Fig. la. The domains of the entire
composite and of the fibres are denoted by D and Q,
respectively. The domain of the matrix is thus denoted
by D—Q. The stiffness tensors of the matrix and fibre
are C,, and Cg, respectively. The fibres are modelied as
ellipsoidal inhomogeneities (prolate spheroids) of the
same size. For simplicity, in the results that are pres-
ented both the fibres and the matrix are assumed to be
isotropic. The model, however can easily accommod-
ate the case of a composite with anisotropic fibres
[15,207 and in principle can accommodate an aniso-
tropic matrix; however, except for transversely iso-
tropic matrix materials, the computations for the case
of an anisotropic matrix become quite rigorous [21].
At this point it is also assumed that the fibres and
matrix deform elastically, and that the fibre—matrix
interface is perfectly bonded. Later these requirements
will be relaxed to allow for elastic—plastic deforma-
tions of the matrix material.

Consider the composite system containing mis-
oriented short fibres as shown in Fig. 1a. The local
coordinates associated with a representative fibre are
x, x5 and x5 where x4 coincides with the fibre axis as
shown in Fig. 1b. The global coordinates are x, x5,
and x;. Now consider that this composite system is
subjected to a uniform temperature change AT. The
temperature change induces a thermal stress field in
the composite due to the mismatch in coefficients of
thermal expansion (CTEs) between the matrix and
fibres. The temperature change is assumed to be uni-
form, thus no thermal stresses are developed due to
temperature gradients within the composite. The ther-
mal stress field in the matrix, however, is non-uniform
due to disturbances by all of the fibres in the com-
posite.

When averaged over the matrix domain, the ther-
mal stress can be related to the volume averaged strain
in the matrix e by:

{m = (3.1)

where bold characters denote tensorial quantities, and
a dot denotes the inner product between two tensors.
If a single fibre is introduced into the composite sys-
tem with an orientation as shown in Fig. 1b, the stress
in the fibre (in local coordinates) can be determined by
the use of Eshelby’s equivalent inclusion method [1, 2,
10, 22] in which the inhomogeneity (Q) with thermal
strain e is replaced with an equivalent inclusion (Q)
with a fictitious eigenstrain e*E’ to yield:

Cn'e

6 = G (@ +e —e")=Cy (€ +e —e*F)

(3.2)

In Equation 3.2, ¢’ is the local disturbance strain due
to the introduction of the single fibre and &’ is the
volume averaged strain defined by Equation 3.1, but
expressed in the local coordinates. The thermal strain,
e is developed due to the mismatch between CTE
tensors of the matrix (a,,) and fibre (a¢) under a uni-

form temperature change, AT = T;—Ty and is given
by e" = (o; — 0y )AT = AT where an isotropic CTE
is now assumed to simplify computations. In the fol-
lowing it is assumed that the temperature change is
a decrease, thus Ty is the initial high temperature (e.g.
a processing temperature) and 7y is the final low

temperature (e.g. room temperature). Following
Eshelby [1], ¢ is related to e*F by:
¢ = S-e*t (3.3)

where § is Eshelby’s tensor and is a function of the
fibre geometry (aspect ratio) and Poisson’s ratio of the
matrix (v,,) and is tabulated elsewhere [10,22].

Substitution of Equation 3.3 into Equation 3.2, fol-
lowed by some algebraic manipulation, yields the
quantity:

€—e = (S—D[(C—Cp)S+Cn]™"
L= (C—Cy)re' + Cre'] (34)

where Iis the 6 x 6 identity matrix. As the added single
fibre can be regarded as any fibre in the composite,
Equations 3.2 and 3.4 hold for any inclusion in the
matrix. It should be noted that Equation 3.2 can also
be written in terms of global coordinates.

Since ¢ in Equation 3.2 is induced internally. in Q,
the volume average of ¢ over the entire composite
domain must vanish. This requirement yields:

1
E+—-J(e~e*'5)dV =0
Q

D

(3.5)

where V7 is the volume of the entire composite (D).
Once ¢ is computed from Equation 3.5, the average
stress in the matrix, {6 >, can be computed from
Equation 3.1. To solve for &, the quantity (¢’ — e*') of
Equation 3.4 must be transformed to global coordin-
ates. The transformation from local to global coordin-
ates is accomplished by use of the transformation
matrices for second-order tensors, Z and X = Z*
where Z relates the quantity (e-e*) in global coordin-
ates to that in local coordinates, ie e — e*E =
Z-(e'—e*F). The components of the transformation
matrices, Z and X, are dependent on the assumed type
of misorientation and thus they are functions of the
spherical polar angles ¢ and 8. The transformation of
Equation 3.4 to global coordinates yields:

e—e*® = Z-A-X-é+Z'B (3.6)

where:

A= -E-DUG-C)S+C]1 (G~ C)

B = ($-D):[(C;—Cp):S+C] " Cere™  (3.7)

Equation 3.7 is substituted into Equation 3.5 and
the volume integral in Equation 3.5 is then evaluated
by the use of the density distribution functions of fibre
orientation as illustrated by Equation 2.2, Upon sub-
stitution of Equation 3.6 into 3.5 and evaluation of
the volume integral, the subsequent equation can be
solved for e to yield:

g = —é[n LP]_I-Q-B

where f is the volume fraction of fibres, P and Q are

(3.8)
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6 x 6 matrices dependent on the distribution function
of fibre orientation, p(0, ¢), and ' is a function of the
fibre orientation distribution. The quantity \y' and the
matrices P and Q are given explicitly in the Appendix.
Once é is determined from Equation 3.8, e*F is
readily evaluated from Equation 3.6 and the volume
averaged thermal stress in the matrix {e), is cal-
culated from Equation 3.1. The average thermal stress
in the fibre, {6 ¢, is then determined from the require-
ment of self-equilibrium of the thermal stresses:

o)y = —(1—fKo)n

For use in future computations it is convenient to
rewrite the average stress in the matrix, Equation 3.1,
in terms of the thermal mismatch strain e™':

(3.9)

(6)m=1L-e" (3.10)
where:
f S o
= — L . I 0K
L ‘V{Cm [IT\VP] Q }
K= (S-D[C-C,)S+C,] ' (3.11

It is also convenient to express the explicit compo-
nents of (6>, of Equation 3.10 in terms of aAT:

{O;j>m = LoaAT fori=j
(Oijdm = 0 fori#j (3.12)
where:
Ly = Ly+Lp+ L (3.13)

and L;; are the components of L as defined by Equa-
tion 3.11.

3.2. Onset of yield in the matrix

At this point the assumption of a completely elastic
matrix 18 relaxed, and it is assumed that the matrix is
able to undergo elastic—plastic deformations. It is also
assumed that between Ty and Ty there is a temper-
ature, 7y, such that the thermal stresses that are
developed upon cooling from Ty to Ty, are large
enough to initiate uniform yielding of the matrix ma-
terial. Yielding of the matrix material thus begins at
Ty, and the temperature drop from Ty, to T, causes
further plastic deformations [19, 23].

If the matrix is to begin yielding at Ty, then the
average matrix stresses, {(6),, must satisfy a yield
criterion. Here the von Mises yield criterion is as-
sumed and can be expressed as:

[{0110m <022 m]? + [{622 w033 m]?
+[6330m<C110n]? = 207 (3.14)

where oy Is the matrix yield stress (at 7} in simple
tension. The onset of yield is then determined by
substitution of Equations 3.12 into Equation 3.14
which, after some manipulation, yields:

ﬁUYL
[(L; — LY + (Ly— Ly)* 4+ (Ls — Ly )*]'?
(3.15)

aA TL" =
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where aATy . defines the normalized critical temper-
ature change required to initiate yielding of the matrix
material upon cooling,i.e. AT, = Ty; — Ty. In other
words, for all AT < ATy __, all deformations will be
elastic.

3.3. Further plastic deformations

If AT > AT, the large elastic stresses that would
otherwise exist in the matrix will relax due to plastic
deformations. To compute the plastic deformations, it
is assumed that the temperature drop from Ty to T,
induces a uniform plastic strain e in the matrix, and
that the matrix is a non-hardening material. The sim-
plifying assumption of a uniform plastic strain in the
matrix neglects the effects of microyielding that is
known to occur near the fibre—matrix interface upon
relatively low temperature changes. As has been
pointed out by Withers et al. [24] and Warner
& Stobbs [25], however, it is average stress field in the
matrix that is believed to control the macroscopic
response of the composite. For macroscopic plastic
deformations to occur, dislocations must move large
distances through the composite relative to the typical
spacing of fibres. The local stress fields near the fibres
(which are responsible for the localized microyielding)
do not contribute to macroscopic deformations of the
composite as they do not encourage the movement of
the dislocations over substantial distances. To ac-
count for the effects of localized plastic flow, a more
rigorous approach is required, such as consideration
of the effects of dislocations punched out from the
fibre—matrix interface.

The uniform plastic strain, e, is assumed to satisfy
the incompressibility requirement ef- = 0. The stress
due to this uniform plastic strain (which is presently
unknown) can be computed by use of Eshelby’s equiv-
alent inclusion method. This solution procedure is
shown schematically in Fig. 2. The stress field in the
composite system in Fig. 2 can be determined by the
straightforward application of Eshelby’s equivalent
inclusion method (as with the inelastic thermal strain
in Section 3.1) to yield:

6 =Ci'(@ +e+e)=C, (@ +e —e*) (3.16)

where the form of el is assumed to be (in local
coordinates):

) 8PL SPL T
e’ = l: -5 T €™ 0,0, 0} (317

D - Q(e”)
Q(—e”)

D — Q(ef)

Figure 2 Schematic representation of the calculation of the uniform
plastic strain in the matrix and the corresponding overall strain of
the composite.



Thus the form of ef" is a result of the averaging over
all possible fibre orientations. Equation 3.16 is math-
ematically equivalent to Equation 3.2, with the excep-
tion that e” has been replaced with — e’ Thus,
using Equation 3.10, the solution for the resulting
stress field can be immediately written as:

(X = — Lo

where (o) is the average stress in the matrix due to
the uniform plastic strain at the low temperature, e~
As in Equation 3.10, the stress components can be
written explicitly as:

(3.18)

<0-ij>£lL = L;kSPL fori = ]
(GfE = 0 fori #j 9
where:
L, L,
* _ i 2 _ 7.
LY = 3 + > Lz (3.20)

It is reiterated that " is still an unknown and the
stress field of Equation 3.19 has simply been expressed
as a function of the unknown plastic strain, g,

The plastic strain, ", can be determined by follow-
ing either of two approaches: an energy or a stress
approach, both of which have been shown to be equiv-
alent [26]. In this work the stress approach is used.
Following the stress approach, the yield criterion of
Equation 3.14 is applied to the unknown total stress
existing at Ty ({o)m =<0 m +{oOn) to yield
a quadratic equation in e which is easily solved to
yield:

— B + (B* — 4AQ)'?

L _ 321
& 2A (3:2D)

In Equation 3.21 the ( + ) and ( — ) roots are used for
compressive and tensile yielding, respectively, and the
constants A, B and C are functions of the material
properties of the constituents, the geometry of the
misoriented short-fibre composite, the temperature
change (AT), and the matrix yield strength (oy.) and
are given by:

A = R} +R3*+RY
B = 20AT[R,RY + R,R} + R3R3]
C = [R?+ R3+ R3Ja2AT? — 2041 (322)
where:
Ry =L-L, T=LT-L3
Ry, = L,-L; R} = L3-L}
Ry=Li-L,; ¥ =L3-LY (3.23)

For the case of a transversely isotropic composite
(a 3-D axisymmetric MSFC or a 2-D in-plane random
MSFC), Equation 3.21 reduces to:

EPL Ovyy — (L3 — Ll)dAT

= (3.24)
Ly —L}

Equation 3.24, however, does not imply that the plas-
tic strain is the same for the 3-D axisymmetric and 2-D
in-plane random MSFCs as the values of L; and
L} (which are functions of the material properties and

the geometry of the composite) will differ in each case.

With the plastic strain, €™ (thus %) known, the
residual stresses in the matrix at 7} are given by the
sum of Equations 3.12 and 3.19. The average stresses
in the fibre can then be found from the requirement of
self equilibrium, Equation 3.9.

4. Deformation of short-fibre
composites

Thus far a general model has been developed to pre-
dict the thermal stress state in a two-phase mis-
oriented short-fibre composite where the matrix is
assumed to undergo elastic—plastic deformations. The
immediate application of the present model is to the
thermal residual stress that is developed in a com-
posite, upon cooling from a high processing temper-
ature to room temperature. In the subsequent
sections, the proposed model is extended/applied to
model the deformation of MSFCs under uniform tem-
perature changes. Of particular engineering interest
are the coefficients of thermal expansion in the elastic
and elastic—plastic regimes.

4.1. Coefficients of thermal expansion
The model that has been developed is now used to
determine the coefficients of thermal expansion
(CTEs) in the elastic and elastic—plastic regimes of
a MSFC. It is noted that the results obtained for the
elastic CTE have been previously obtained by Takao
[14] but are included within the framework of the
present model for completeness.
The effective CTE of a composite, a., is defined as:
Yo 1t

—_ —_ total

X = 5o = ATVDLe dv @.1)
where yp is the average macroscopic strain in the
composite, ' is the total strain, and it is assumed
that no initial strain exists. In the elastic case, after use
of Equations 3.4 and 3.8 and some manipulation,
y5 (the average macroscopic elastic strain) can be
expressed as:

1
Yy = ~J e*EdV + a AT 4.2)
Vb Ja

In Equation 4.2 e*® = Z- ¢** and is obtained by solv-
ing for e*¥ from Equations 3.4 and 3.8 and then
transforming the result to global coordinates. The
integral in Equation 4.2 is then evaluated in the same
manner as that in 3.5. The composite elastic CTE is
then obtained upon substitution of Equation 4.2 into
4.1. For the case of an aligned short-fibre composite,
Equation 4.2 can be expressed as:

YE = fe*t + o AT (4.3)

which agrees with the result obtained by Takao
& Taya [15].

After the matrix yields, Equation 4.1 can still be
used to compute the composite CTE; however the
average macroscopic strain in the elastic-plastic re-
gime, vp, is different as the total strain changes due to
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the plastic relaxation. Following reasoning similar to
that used to find y§, the macroscopic strain due

to uniform plastic deformations, 5, is obtained as:
p Y

1
Yo = — je*PdV+ et

- (4.4)

The quantity e™ in Equation 4.4 is the average uni-
form plastic strain in the matrix, and is obtained by
transforming e’ to global coordinates and then aver-
aging over all possible fibre orientations to yield:

L —

4.5)
where Y and Q are given in Appendix A. Substitution
of Equations 4.4 and 4.5, and the temperature change
in the elastic—plastic regime (AT — AT,,) into Equa-
tion 4.1, yields the composite thermal expansion due
to plastic deformations.

5. Results and discussion

In this section, numerical results obtained from the
proposed model are presented for typical metal matrix
composites of engineering interest. Material proper-
ties used in all computations are shown in Table I

TABLE I Material properties of composite constituents used in
calculations

E CTE oyL/TL
(GPa) v (x1076°C~1) (MPa)/(°C)

Matrix
materials

2124 A1 67.6 0.33 24.7 50.8/20

Cu 1240 0.34 17.6 39.2/20
Fibre
materials

SiC 427.1 0.17 43 —

Tungsten 358.0 0285 4.75 —
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Figure 3 Variation of the normalized thermal residual stress in the
matrix with the fibre volume fraction for 3-D axisymmetric
misorientation with an elastic matrix.
cosine-type distribution. o = 5; B = n/2.
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., uniform; ---,

[19,23]. The computations in Figs 36 are for a short-
fibre composite with 3-D axisymmetric misorienta-
tion, while those in Figs 7-11 are for one with 2-D
inplane misorientation.

Figs 3 and 4 illustrate the effect of fibre volume
fraction on the thermal residual stress state for a given
set of geometric parameters and a temperature change
of AT = — 200°C. Both Figs 3 and 4 show the rela-
tionship of the average matrix stresses normalized by
Young’s modulus of the matrix, {6),/En, for a given
aspect ratio and cut-off angle. In Fig. 3, the cut-off
angle is set at m/2, while in Fig. 4, it is set to /3. The
aspect ratio, o, is set to o = 5 for both figures. In each
figure, two types of distribution functions are investig-
ated, uniform (solid lines) and cosine type (dashed
lines). In the following discussion, the superscripts
u and c denote stress components based on uniform
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Figure 4 Variation of the normalized thermal residual stress in the
matrix with the fibre volume fraction for 3-D axisymmetric
misorientation with an elastic matrix.
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Figure 5 Variation of the normalized thermal residual stress in the
matrix with the distribution cut-off angle for 3-D axisymmetric
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0.005

0.004

0.003

0.002

modulus of matrix

0.001f

Average matrix stress normalized by Young's

0-000 1 i | 1 1111 l L 5t
1.0 10.0

Fibre aspectratio, a

Lo tlat

100.0
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initiate uniform yielding of the matrix versus fibre volume fraction
of a SiC/Al short-fibre composite with an aspect ratio of o = 4.
——, B=0; --- B = n/2 (2-D uniform distribution).

and cosine-type distributions, respectively. In the fol-
lowing discussion, the symbol & is used to represent

the volume averaged stress quantity and has the same

meaning as {6 ). Both Figs 3 and 4 show that all three
stress components increase with increasing volume
fraction of fibre, f. It should also be noted that
the dependence of ¢ on f is relatively linear up to
f = 10%. Fig. 3 shows that an isotropic state of stress
exists for a uniform distribution with B = n/2, ie.
o, = 0%, = 0}%3, as shown by the solid line. This case
corresponds to a completely random 3-D composite.
For a cosine-type distribution at B = n/2, more fibres
are aligned along the x;-axis, thus the composite sys-
tem is not isotropic and the axial stress (o33) is larger
than the transverse stresses (0,7 = 0,,), as shown by
the dashed curves. This is also the case in Fig. 4 and is
true for any cut-off angle. Both Figs 3 and 4 show that
for a given cut-off angle, in these casesw/2 and m/3,
respectively, the fibre volume fraction has a much
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greater effect on all three stress components than the
fibre orientation distribution type. The effect of fibre
orientation distribution type, however, increases with
increasing f. It should also be noted that as f— 0,
(6>, — 0 which corresponds to a dilute suspension of
fibres such that when averaged over the infinite do-
main, the disturbance stress in the matrix vanishes.
The stresses in the fibre approach that obtained from
Eshelby’s solution [1] for a single inhomogeneity in
an infinite elastic medium.

Fig. 5 shows the dependence of the average stress in
the matrix normalized by Young’s modulus of the
matrix, <6 n/E, on the fibre-cut-off angle § where
the aspect ratio (x = 5) and fibre volume fraction
(f = 0.4) are fixed. Again, both uniform (solid lines)
and cosine-type (dashed lines) distributions are con-
sidered. At B =n/2 for a uniform distribution, all
stress components coincide, i.e. o%; = 04, = 033,
thus a completely isotropic composite, and for a co-
sine type distribution, 6%; > 0%, = ©5%;, as explained
in the preceding section. It is noted that 63; ~ c53
and is approximately constant up to = n/6. Over
this span, however, 6,; = 0,, does increase slightly.
For the case where B — 0, 6" = ¢° and these results
coincide with the solution for an aligned short-fibre
composite [10]. As Fig. 5 shows, the effect of fibre
distribution type increases as the degree of fibre mis-
orientation increases, i.e. as f increases. It can thus be
concluded that an accurate assessment of the distribu-
tion type may not be necessary at lower values of the
cut-off angle, and even that the simple solution for an
aligned short-fibre composite may be acceptable for
small degrees of misorientation. At larger values of f3,
however, it is apparent that both of these parameters
significantly effect the thermal residual stress state and
should be considered.

The effect of fibre aspect ratio, o, on the average
matrix stress is shown in Fig. 6, where § = n/3 and
f=04. Fig. 6 shows that ¢33 increases rapidly with
o at low aspect ratios, but becomes saturated at
o ~ 30. This phenomenon is observed with both uni-
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form and cosine-type distributions, however, the co-
sine-type distribution tends to become saturated at
slightly lower values of a. The other stress compo-
nents, 61, = G,,, also increase more rapidly with « at
lower values of a and become saturated at a = 30.
Here, though, 6{; = 0%, is much less than ¢}, = o},
as it becomes saturated. As o — 1 (spherical filler), all
stress components for both types of distribution func-
tions are equal and they coincide with the solution
given by Taya et al. [5].

In Fig. 7, the normalized critical temperature
change required to initiate uniform yielding of the
matrix is studied for two 2-D SiC/Al MSFCs with
distribution cut-off angles of B = O and B = m/2. These
two cut-off angles correspond to an aligned short-fibre
composite and a 2-D in-plane random short-fibre
composite, respectively. These two cases thus bound
AaAT,, for all B, i.e. for all 2-D in-plane MSFCs, with
all other parameters held constant. In Fig. 7, the dif-
ference between the two curves can be considered the
variability in the range of completely elastic response
(to the thermal loading) for a 2-D MSFC. It is seen
that the effect of misoriented fibres (in-plane) increases
the range of elastic response to thermal loading of the
composite. This is of course at the expense of a de-
creased axial stiffness. It is seen, however, that the
increased range of elastic response decreases rapidly
with increasing fibre volume fraction. In fact at large
volume fractions (f= 0.5) the effect of misoriented
fibres on the range of elastic response is so small
( & 31°C) that it is probably insignificant for practical
applications.

The normalized residual stresses for both the elastic
and elastic—plastic models for a random 2-D in-piane
MSFC (B = n/2, thus 05, = 033 # 0;4) are shown in
Fig. 8. The in-plane stresses are affected much more
than the out of plane stress. The yield condition of
Equation 3.14 is seen to be satisfied after yield as the
difference between the curves 655 = 655 and off is
constant and equal to the normalized yield strength of
the matrix.

In Fig. 9, the effect of fibre geometry (aspect ratio)
on the magnitude of elastic and elastic—plastic thermal
residual stresses is investigated for a SiC/Al MSFC.
Although after yielding the magnitude of the flow
stress is constant, the magnitude of the hydrostatic
stress is still important in some instances. For example
in thermal stress finite element codes, the accuracy of
a stress solution is a percentage of the magnitude of
the total stress and can thus be very large when large
hydrostatic stress components exist. At low aspect
ratios, 653 and o5 increase rapidly, but then remain
approximately constant as the composite becomes
saturated at o = 30. At aspect ratios greater. than
o & 30, the composite essentially behaves as one rein-
forced by continuous fibres (a — co). In both the ¢las-
tic and elastic—plastic cases, o,; and ©,, are less
sensitive to & than G33. As o — 1, all stress compo-
nents coincide and reduce to the result given by Taya
et al. [3] for a particulate reinforced composite. In this
case, relaxation due to uniform plastic flow of the
matrix is energetically unfeasible, as the average
matrix stress state is hydrostatic due to the isotropic



reinforcement. However, localized yielding will occur
in reality and this is not accounted for in the present
model.

Fig. 10 shows the normalized matrix stress versus
the cut-off angle for a case when AdAT > AaA T for
all B, i.e. the CTE mismatch is large enough to cause
uniform yielding of the matrix for all B. Again, results
for both the elastic (solid lines) and elastic-plastic
(dashed lines) models are shown. It is seen that the
relaxation due to plastic flow results in a decrease in
o5t and an increase in o} for all B relative to the
elastic results. For this case, plastic flow results in an
increase in o55 for the range of smaller B, then an
increase in o%5 for larger B (relative to the elastic
results). This phenomenon is again a result of the
requirement of volume constancy of the matrix.
Fig. 10 also shows that 6,, = 033 # o for p = n/2
(in-plane random MSFC) and 64, = 6,; # G533 for
B =0 (aligned SFC). Note that the elastic—plastic
model predicts that o%% and o%§ are approximately
constant over the entire range of B. However, as 65, is
not approximately constant over the range of B, the
inelastic strain €® is also not approximately constant
over the range of . Thus, although the total residual
stress predicted by the elastic—plastic model is nearly
independent of B, the relaxation due to plastic flow
that occurs to produce the final residual stress is
dependent on B. It is important to recognize this fact
in the case of a deformation analysis such as that of
dimensional change of a composite due to thermal
cycling.

Finally, with regard to the deformation of short-
fibre composites, the axial thermal expansion coeffi-
cients (CTEs) of a 2-D W/Cu MSFC in both the elastic
and elastic-plastic ranges are examined in Fig. 11.
Three cases are considered: an aligned continuous
fibre composite, an aligned short-fibre composite, and
a 2-D in-plane random short-fibre composite. It is
seen that the discontinuous reinforcement results in
a composite that is more expansive as the large CTE
of the matrix plays a more significant role. For both
the aligned continuous and short-fibre composites, the
elastic-pastic CTE is much smaller than the elastic
CTE and can be approximated to the first order by the
CTE of the fibre. This first order approximation can
be formally obtained by neglecting the Poisson con-
traction of the composite in the transverse direction
[27]. It is also evident from Fig. 11 that the effect of
misoriented fibres on the axial CTE of the composite
is much larger in the elastic—plastic range than in the
elastic range. Fig. 11, however, does not completely
describe the thermal expansion behaviour of 2-D
MSFCs as expansions in the transverse and thickness
directions, which are readily computed with the pres-
ent model, must certainly be considered in practice. It
should be noted that the result for the axial CTEs for
the continuous fibre composite in Fig. 11 agrees with
that of Wakashima et al. [19] which was derived by
the minimization of free energy approach.

6. Conclusion
A micromechanics model has been proposed to ana-
lyse residual stresses and deformations that develop in

short-fibre composites upon an applied uniform tem-
perature change. The model is based on Eshelby’s
equivalent inclusion method and treats the interaction
among fibres at finite volume fractions through the
Mori-Tanaka mean field theory. The model treats the
matrix as an elastic/plastic material while the fibre is
elastic. The model is able to account for the effects of
misoriented short fibres, the orientations of which are
described by a density distribution function. Uniform
and cosine-type distribution functions are used to
simulate actual distributions of misoriented fibres.
Based on the numerical results above, it is seen that
the misorientation of short fibres has a significant
effect on both the stress and deformation behaviour of
short-fibre composites. Misoriented short fibres can
increase the range of thermoelastic response of a short
fibre composite; however, this is at the expense of
a reduced elastic stiffness.
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Appendix ' and P and Q matrices

For 2-D in-plane misorientation !, P, and Q are
given by Taya et al. [13]. For 3-D axisymmetric mis-
orientation, \s' are given by:

Y* =1 — cosP
c_l cos(a— 1)p—1 _cos(a+1)B——1
"’_2[ a—1 a+1 ](Al)

The explicit forms of the non-zero elements of P and
Q for both uniform and cosine-type density distribu-
tion functions are:

Py =3[A11(Co+Ca)+A338,+(A13+A3,)Cs
+ 3A445:] +3[(2A 12 +2A46)C,
+ (A3 + Az +2A44)8,]
P12 = #[A11(Co + Ca) + As3Ss + (Ass + A3y)Cs
+3A44S3] + 3[(2A 12 —%A66)C,
+(A1s+ A3 —3A4)S,]
Pi3=3[A13(C; + Co) + A3y Sa + Ar5S,
+ (A1 + A33)Cs — 3A44S3]
P3; =3[A3:1(Co + Cu) + Ay3S4 + A5S,
+ (A1 + A33)Cs — 3A4,S5]
P33 =A118:+ A33Cs + (A3 + A3y)Cs + 3A4S;
Pis = 3[A44(Cy + C3) + Ag6S,
+3(A11 — Ayz — Asy + Az3)S5]

P66=_2L[P11_P12] (A2)
and

Qu: =%C2

Qi2 =%Co

Qs =%Sz

Qs =%Ss

Qi1 =5,

033 =C;

Q3s = — S5 (A3)

where A;; is defined in Equation 3.7 and the symmetry
of A;; has been used. The S; and C; items are depend-
ent on the fibre distribution function and cut-off angle.
For a uniform distribution, they are given by:

Co =1 —cosp

1 — cos®B
C,=——7—
2 3
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1
Cy=z| - =
3 2[ cosp +—¢ 0 15

1 — cos®
Com g™t

Cs = @ [sin4[3 _

3 B 14
cosB_cosB+ ]

sin?B

2, 2
3 3 3cosP

1
S, = — o [9 cosp — cos*B — 8]

1 3 5 1
332_[_C0SB_COSB+COSB+ 6:'

6 0 15
-2 —
S4=?[—sin4[3—m—§+ s ]

3 3cosp
-

: (A4

For a cosine-type distribution, C; and §; are given by:

Co= %Ex

C, = $[E; + E;]

C; =4[E, ~ }E5 + 3Es]
Cy = 16[E; + 3E; + 3E;]
Cs = T5[E; +3E; + 3Es]
S;= %[3E1 — Es]

Sy =3[E\ + 3E; — 3Es]
Se=16[5E; —3E; + 3E;]

S5 = %[E7 — E¢] (AS)
where:
E _cosfa—1B—1 cos(a+ 1)p—1
e a—1 a+1
E _cos(a—3)B—1_cos(a+3)B—1
T a—3 a+3
E _cos@—35)p—1 cosfa+35)p—1
T a—>5 a+5
E _sin(a—1)B | sin(a + )P
T oa—1 a+1
sin{fa — 3)p  sin(a + 3)B
= A
° a—3 a+3 (A6)

where § is the cut-off angle.



