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A micromechanics model is proposed to analyse residual stresses and deformations that develop 
in short-fibre composites upon an applied uniform temperature change. The model is based on 
Eshelby's equivalent inclusion method and treats the interaction among fibres at finite volume 
fractions through the Mori-Tanaka mean field theory. The model treats the matrix as an 
elastic/plastic material while the fibre is elastic and is able to account for the effects of the 
composite microgeometry. To this end, the effects of misoriented short fibres, the orientation of 
which is described by a density distribution function, are considered. Numerical results obtained 
from the proposed model indicate thatthe misorientation of short fibres has a significant effect on 
both the stress and deformation behaviour of short-fibre composites. 

1. I n t r o d u c t i o n  
The thermoelastic/inelastic behaviour of short-fibre 
composites is of considerable interest in the assess- 
ment of these materials as candidates for high-temper- 
ature structural applications such as jet-engine turbine 
components. For high-temperature applications, both 
the stress and deformation of a short-fibre composite 
are of importance. A primary factor contributing to 
the stress and deformation is the composite micro- 
geometry, which in turn is greatly affected by process- 
ing techniques. Fibres, intended to be aligned, will in 
general become misoriented during processing, and 
the amount of fibre misorientation is generally a func- 
tion of the processing technique. The purpose of this 
work is to investigate the effect of microgeometry on 
the thermal stress and deformation of a short-fibre 
composite. To this end, a micromechanics model is 
developed to predict the stress and deformation of 
a short-fibre composite subjected to an applied uni- 
form thermal load. 

This investigation of the effects of the micro- 
geometry on the stress and deformation behavior of 
a short-fibre composite is motivated in part by the 
belief that advances in image processing and analysis 
techniques will soon make possible the rapid and 
accurate characterization of the three dimensional 
microgeometry of a short-fibre composite. With the 
knowledge of the effects of the microgeometry on the 
thermomechanical performance of a short-fibre com- 
posite, such characterization could be readily applied 
as a quality control measure in a production environ- 
ment. 

With regard to the microgeometry, this work con- 
siders two important aspects: the shape and misorien- 
ration of short fibres. The analytical model is 
developed within the framework of the equivalent 
inclusion idea of Eshelby I-1] and accounts for the 

interaction among misoriented short fibres through 
the mean-field theory of Mori & Tanaka [2]. The 
general applicability of the proposed model is demon- 
strated, as it is applied to determine thermal residual 
stresses and thermal expansion coefficients in the elas- 
tic and elastic-plastic regimes. 

The modelling of elastic thermal residual stresses 
and thermal expansion coefficients (CTEs) of com- 
posite materials has received considerable attention in 
the literature. The key works with regard to thermal 
expansion of composite materials are those of Levin 
[3] and Rosen & Hashin [4], who derived exact 
connections between the effective thermal expansion 
coefficients and elastic moduli of elastic composite 
materials. The analysis of particular composite micro- 
structures, however, is primarily devoted to simpler 
microstructural geometries. For example, spherical 
particulate [5-7] and aligned continuous fibre 
[8, 9] reinforced composites have received extensive 
research. Eshelby's equivalent inclusion method has 
been applied to model short-fibre composites 
containing aligned spheroidal fibres [10-12]. The 
effect of misoriented short fibres in a composite has 
also been analysed with regard to thermal stresses 
[13] and elastic CTE [-14, 15]. 

With regard to the elastic-plastic behaviour, many 
analyses have been directed toward composites under 
the influence of applied mechanical and thermal loads, 
to predict properties such as yield strength, work 
hardening rate, thermal expansions, and the flow be- 
haviour of short-fibre composites [16-18]. Hysteresis 
experienced upon cyclic thermal loading has been 
considered by Wakashima et al. [19] who modelled 
the elastic-plastic deformations of composites rein- 
forced by aligned thin discs or continuous fibres. 

In this work, fundamental ideas regarding mis- 
oriented short-fibre composites that are utilized 
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routinely in this work are presented in Section 2. In 
Section 3, approximate expressions for the thermal 
residual stresses in a misoriented short-fibre com- 
posite are obtained for both an elastic and elastic- 
plastic deforming matrix. The thermal expansion coef- 
ficients of the same misoriented short-fibre composite 
in  both the elastic and elastic-plastic regimes are 
presented in Section 4. The analysis is strictly valid 
only for monotonic loading, but can be applied in an 
incremental manner to general loading. The utility of 
the proposed model is exhibited in Section 5 as nu- 
merical results are presented for some metal matrix 
composites of practical interest. Finally concluding 
remarks are made in Section 6. 

2. Misoriented short-fibre composites 
In the following analysis, the residual stress and defor- 
mation of a misoriented short-fibre composite 
(MSFC) will be obtained. It is thus desirable to briefly 
review some general concepts regarding the orienta- 
tion of fibres in a composite and the application of 
these concepts to MSFCs. It is first noted that the 
term misoriented may be misleading, in that it implies 
that the fibres in a composite should be oriented in 
some prescribed manner, but are not. A MSFC may 
well contain misoriented fibres due to imperfections in 
processing techniques; however, the existence of mis- 
oriented fibres may be by design, i.e. to improve the 
composite properties in preferred directions. 

In the analysis ofa MSFC it is necessary to consider 
the auxiliary problem of an infinite matrix in which 
a short fibre is embedded at some general orientation 
(Fig. 1). The subsequent analysis is most easily facilit- 
ated by defining two coordinate systems; a local 
coordinate system (x'l, x~, x~) in which the x~ axis 
coincides with the axis of a representative fibre and 
a global coordinate system (xl, x2, x3). The local and 
global coordinate systems are related by the trans- 
formation: 

x =  Y ' x '  x ' =  Y - l ' x  (2.1) 

where Y is a second-order tensor, the components of 
which are functions of the spherical polar angles 0 and 
q~. It will be necessary to determine the average of 
a second-order tensor (typically the stress and strain) 

over the domain consisting of all fibres. The deter- 
mination of this quantity is two-fold and consists of (a) 
the computation of the orientation dependent average 
strain in a single fibre, and (b) the subsequent average 
of this quantity over all possible fibre orientations. 
The distribution of possible fibre orientations is de- 
fined by the use of a density distribution function, 
p(0, q~) where 0 and q0 are the angles of a spherical 
polar coordinate system. Physically, the distribution 
function, p(0, q~), is a description of the number of 
fibres intersecting the surface of a unit sphere. 

In this work, two modes of fibres misorientation 
will be considered; two-dimensional in-plane, and 
three-dimensional axisymmetric. These are applicable 
to composites produced by compression moulding 
and extrusion, and allow the simulation of composites 
containing fibres randomly distributed 'in-plane' but 
misoriented in the 'thickness' direction. For 2-D in- 
plane misorientation, all fibres are confined to the 
X2--X 3 plane, and for 3-D axisymmetric misorientation 
all fibres are uniformly distributed over the 2~ range 
of tp. Thus for each of these two modes of misorienta- 
tion, p(0, q~) is reduced to a function of 0 only. For 
each mode of misorientation, two distribution func- 
tions are considered: uniform, p(0) = Po and cosine- 
type, 9(0) = 9oCos(a0). The cosine-type distribution is 
used to simulate a normal distribution while allowing 
the closed form integration over the finite range of the 
distribution. Each distribution function is assumed to 
be bounded by the cut-off angle, _+ [3, such that all 
fibres lie in the range -[3~<0~< +[3. Due to the 
normalization requirement of p(0), Po and a are func- 
tions of the cut-off angle alone [13]. 

The principle use of the distribution functions is to 
perform the weighted integration (or averaging) of 
a quantity F(0, q0) over the domain of all fibres. To this 
end, F(0,q~) is first integrated over the domain of 
a single fibre, the result of which is orientation- 
dependent. This orientation-dependent quantity is 
then integrated (averaged) over all possible fibre ori- 
entations. In particular, the following relation will 
frequently be used: 

f2~ r/E(F(O, (p)) p(O) sin 0 dO d ,  
1 fJo dO 

0n  = /2 . 

F(0,(p)dV = ~ ~ p(0)sin0d0dqb 

(2.2) 
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Figure 1 Misoriented short-fibre composite system. (a) Domain of 
the analytical model, (b) definition of the coordinate system used. 

where the integral over f~ is over the domain consist- 
ing of all fibres and the volume of the composite, VD, 
has been defined by: 

27t 
Vf~ "J0 ]2 p(0) Vsin 0 dO dqb 

f - - (2.3) 
vo lid 

In Equation 2.3, Vis the volume of a single fibre, Vn is 
the volume of the domain of all fibres, f is the volume 
fraction of fibres, and (F(0, q0)) is the volume average 
of F(0, q~) over a single fibre. In the following analysis, 
quantities similar to the left hand side of Equation 2.2 
will routinely be evaluated in this manner. 
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3. Thermal  residual stresses 
3.1. Elastic analysis 
The domain of the analytical model consists of an 
infinite elastic body containing misoriented short 
fibres, as shown in Fig. la. The domains of the entire 
composite and of the fibres are denoted by D and ~, 
respectively. The domain of the matrix is thus denoted 
by D-~.  The stiffness tensors of the matrix and fibre 
are Cm and Cf, respectively. The fibres are modelled as 
ellipsoidal iniaomogeneities (prolate spheroids) of the 
same size. For simplicity, in the results that are pres- 
ented both the fibres and the matrix are assumed to be 
isotropic. The model, however can easily accommod- 
ate the case of a composite with anisotropic fibres 
[15, 20] and in principle can accommodate an aniso= 
tropic matrix; however, except for transversely iso- 
tropic matrix materials, the computations for the case 
of an anisotropic matrix become quite rigorous [21]. 
At this point it is also assumed that the fibres and 
matrix deform elastically, and that the fibre-matrix 
interface is perfectly bonded. Later these requirements 
will be relaxed to allow for elastic-plastic deforma- 
tions of the matrix material. 

Consider the composite system containing mis- 
oriented short fibres as shown in Fig. la. The local 
coordinates associated with a representative fibre are 
x'l, x~ and x~ where x~ coincides with the fibre axis as 
shown in Fig. lb. The global coordinates are xl,  x2, 
and x3. Now consider that this composite system is 
subjected to a uniform temperature change AT. The 
temperature change induces a thermal stress field in 
the composite due to the mismatch in coefficients of 
thermal expansion (CTEs) between the matrix and 
fibres. The temperature change is assumed to be uni- 
form, thus no thermal stresses are developed due to 
temperature gradients within the composite. The ther- 
mal stress field in the matrix, however, is non-uniform 
due to disturbances by all of the fibres in the com- 
posite. 

When averaged over the matrix domain, the ther- 
mal stress can be related to the volume averaged strain 
in the matrix ~ by: 

( ~ ) n ,  = C m ' ~  (3.1) 

where bold characters denote tensorial quantities, and 
a dot denotes the inner product between two tensors. 
If a single fibre is introduced into the composite sys- 
tem with an orientation as shown in Fig. lb, the stress 
in the fibre (in local coordinates) can be determined by 
the use of Eshelby's equivalent inclusion method [1, 2, 
10, 22] in which the inhomogeneity (fl) with thermal 
strain e +' is replaced with an equivalent inclusion (~) 
with a fictitious eigenstrain e *E' to yield: 

r = Cf"  ( U  + e'  - e T') = C m" ( e '  -q- e'  - -  e *E' )  

(3.2) 

In Equation 3.2, e' is the local disturbance strain due 
to the introduction of the single fibre and ~' is the 
volume averaged strain defined by Equation 3.1, but 
expressed in the local coordinates. The thermal strain, 
e T' is developed due to the mismatch between CTE 
tensors of the matrix ( am)  and fibre (a f) under a uni- 

form temperature change, AT = TL-Tn and is given 
by e +' = (af - am)AT = aAT where an isotropic CTE 
is now assumed to simplify computations. In the fol- 
lowing it is assumed that the temperature change is 
a decrease, thus Tn is the initial high temperature (e.g. 
a processing temperature) and TL is the final low 
temperature (e.g. room temperature). Following 
Eshelby [11, e' is related to e *E' by: 

e' = S ' e  *E" (3.3) 

where S is Eshelby's tensor and is a function of the 
fibre geometry (aspect ratio) and Poisson's ratio of the 
matrix (Vm) and is tabulated elsewhere [10, 221. 

Substitution of Equation 3.3 into Equation 3.2, fol- 
lowed by some algebraic manipulation, yields the 
quantity: 

e' - e *~' = ( S -  I)" [ ( G  - Cm)" S + C m l - 1  

�9 [ - -  (Cf - -  C m ) " e '  ~- Cf  ~ eT ' ]  (3.4) 

where/ is  the 6 x 6 identity matrix. As the added single 
fibre can be regarded as any fibre in the composite, 
Equations 3.2 and 3.4 hold for any inclusion in the 
matrix. It should be noted that Equation 3.2 can also 
be written in terms of global coordinates. 

Since o in Equation 3.2 is induced internally in ~, 
the volume average of 6 over the entire composite 
domain must vanish. This requirement yields: 

O + ~  ( e - e * E ) d V  = 0 (3.5) 

where VD is the volume of the entire composite (D). 
Once E is computed from Equation 3.5, the average 
stress in the matrix, (6)m, can be computed from 
Equation 3.1. To solve for E, the quantity (e' - e *E') of 
Equation 3.4 must be transformed to global coordin- 
ates. The transformation from local to global coordin- 
ates is accomplished by use of the transformation 
matrices for second-order tensors, Z and X =  Z -1 
where Z relates the quantity (e-e* E) in global coordin- 
ates to that in local coordinates, i.e. e -  e ' E =  
Z'(e'-e*~'). The components of the transformation 
matrices, Z and X, are dependent on the assumed type 
of misorientation and thus they are functions of the 
spherical polar angles q~ and 0. The transformation of 
Equation 3.4 to global coordinates yields: 

e - e  *E = Z - A . X . ~ + Z . B  (3.6) 

where: 

A = 

B = 

- ( s  - l ) .  E(cf  - Cm)" S + C m ] -  1 "(Cf - -  Cm) 

( S - I ) ' [ ( C r - C m ) ' S  + Cm]-I"Cf 'e  T' (3.7) 

Equation 3.7 is substituted into Equation 3.5 and 
the volume integral in Equation 3.5 is then evaluated 
by the use of the density distribution functions of fibre 
orientation as illustrated by Equation 2.2. Upon sub- 
stitution of Equation 3.6 into 3.5 and evaluation of 
the volume integral, the subsequent equation can be 
solved for E to yield: 

where f is the volume fraction of fibres, P and Q are 
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6 x 6 matrices dependent on the distribution function 
of fibre orientation, p(0, q0), and ~i is a function of the 
fibre orientation distribution. The quantity qt i and the 
matrices P and Q are given explicitly in the Appendix. 

Once ~ is determined from Equation 3.8, e *E is 
readily evaluated from Equation 3.6 and the volume 
averaged thermal stress in the matrix (6)m is cal- 
culated from Equation 3.1. The average thermal stress 
in the fibre, (6) f ,  is then determined from the require- 
ment of self-equilibrium of the thermal stresses: 

f ( 6 ) f  = --  (1 - - f ) ( 6 )m  (3.9) 

For use in future computations it is convenient to 
rewrite the average stress in the matrix, Equation 3.I, 
in terms of the thermal mismatch strain eT': 

where: 

( 6 ) m  = L ' e  T' (3.10) 

L 1 Q . }  

K = ( S - - l ) ' [ C f - - C m ) ' S + C m ] - t ' C f  (3.11) 

It is also convenient to express the explicit compo- 
nents of (6)m of Equation 3.10 in terms of sAT: 

< a i j > m  = LictAT for i = j  

<O'ij >r n = 0 for i #:j (3.12) 

where: 

Li = Lil + Li2 + Li3 (3.13) 

and Lij are the components of L as defined by Equa- 
tion 3.11. 

3.2. Onset of yield in the matrix 
At this point the assumption of a completely elastic 
matrix is relaxed, and it is assumed that the matrix is 
able to undergo elastic-plastic deformations. It is also 
assumed that between TH and TL there is a temper- 
ature, TVL, such that the thermal stresses that are 
developed upon cooling from TH to TVL are large 
enough to initiate uniform yielding of the matrix ma- 
terial. Yielding of the matrix material thus begins at 
TVL and the temperature drop from TyL to TL causes 
further plastic deformations [19, 23]. 

If the matrix is to begin yielding at TyL, then the 
average matrix stresses, (6)m, must satisfy a yield 
criterion. Here the von Mises yield criterion is as- 
sumed and can be expressed as: 

[<O ' l l>m (0"22>m] 2 At- [<O'22>m--<O'33>m] 2 

+ [<O'33>m--<(~l l>m] 2 = 2a2VL (3.14) 

where OrE is the matrix yield stress (at TL) in simple 
tension. The onset of yield is then determined by 
substitution of Equations3.12 into Equation3.14 
which, after some manipulation, yields: 

~ O ' y L  

~ATLo r = [(L1 _ L2)2 d- (L 2 --  L3) 2 -1- (L 3 - L t )  211/2 
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where ccATLo, defines the normalized critical temper- 
ature change required to initiate yielding of the matrix 
material upon cooling, i.e. ATLo, = TyL -- TH. In other 
words, for all AT < ATLo,, all deformations will be 
elastic. 

3.3. Further  plastic d e f o r m a t i o n s  
If AT > ATL~r, the large elastic stresses that would 
otherwise exist in the matrix will relax due to plastic 
deformations. To compute the plastic deformations, it 
is assumed that the temperature drop from TH to TL 
induces a uniform plastic strain e PL in the matrix, and 
that the matrix is a non-hardening material. The sim- 
plifying assumption of a uniform plastic strain in the 
matrix neglects the effects of microyielding that is 
known to occur near the fibre-matrix interface upon 
relatively low temperature changes. As has been 
pointed out by Withers et al. 1-241 and Warner 
& Stobbs [25], however, it is average stress field in the 
matrix that is believed to control the macroscopic 
response of the composite. For macroscopic plastic 
deformations to occur, dislocations must move large 
distances through the composite relative to the typical 
spacing of fibres. The local stress fields near the fibres 
(which are responsible for the localized microyielding) 
do not contribute to macroscopic deformations of the 
composite as they do not encourage the movement of 
the dislocations over substantial distances. To ac- 
count for the effects of localized plastic flow, a more 
rigorous approach is required, such as consideration 
of the effects of dislocations punched out from the 
fibre-matrix interface. 

The uniform plastic strain, e PL, is assumed to satisfy 
the incompressibility requirement e PL = 0. The stress 
due to this uniform plastic strain (which is presently 
unknown) can be computed by use of Eshelby's equiv- 
alent inclusion method. This solution procedure is 
shown schematically in Fig. 2. The stress field in the 
composite system in Fig. 2 can be determined by the 
straightforward application of Eshelby's equivalent 
inclusion method (as with the inelastic thermal strain 
in Section 3.1) to yield: 

6' = C f ' ( ~ '  + e' + e PL') = C m ' ( ~ '  + e' - e *P') (3 .16)  

where the form of e PL is assumed to be (in local 
coordinates): 

e PL' -= 13 PL, O, O, 0 (3.17) 
2 '  2 '  

D - ~ ( e  p) D - ~2(e p) 

f ~ ( -  e p) 

f ~ (  - e p) 

Figure 2 Schematic representation of the calculation of the uniform 
plastic strain in the matrix and the corresponding overall strain of 
the composite. 



Thus the form of e vE is a result of the averaging over 
all possible fibre orientations. Equation 3.16 is math- 
ematically equivalent to Equation 3.2, with the excep- 
tion that e ~' has been replaced with - e  PL'. Thus, 
using Equation 3.10, the solution for the resulting 
stress field can be immediately written as: 

(6>Pm L = -- L" e PL' (3.18) 

where (O>Pm L is the average stress in the matrix due to 
the uniform plastic strain at the low temperature, e PL'. 

As in Equation 3.10, the stress components can be 
written explicitly as: 

((~ij>Pm L = L ~ a  PL for i = j 
(3.19) 

(r L = 0 for i # j 

where: 

L *  L i l ~L~ 
= ~ -  q- - Li3 (3.20) 

It is reiterated that a PL is still an unknown and the 
stress field of Equation 3.19 has simply been expressed 
as a function of the unknown plastic strain, a PE. 

The plastic strain, e Pt, can be determined by follow- 
ing either of two approaches: an energy or a stress 
approach, both of which have been shown to be equiv- 
alent [26]. In this work the stress approach is used. 
Following the stress approach, the yield criterion of 
Equation 3.14 is applied to the unknown total stress 
existing a t  T L ( ( ~ )  T = < ~ ) m  + (~)Pm L) to yield 
a quadratic equation in a PL which is easily solved to 
yield: 

~PL = - -  B + (B 2 - 4AC) 1/2 (3.21) 
2A 

m 

B = 

C = 

where: 

In Equation 3.21 the ( + ) and ( - ) roots are used for 
compressive and tensile yielding, respectively, and the 
constants A, B and C are functions of the material 
properties of the constituents, the geometry of the 
misoriented short-fibre composite, the temperature 
change (AT), and the matrix yield strength ( (~YL)  and 
are given by: 

'2 + 2 + 2 

2~AT[R1R*  + R2R* + R3R*] 

[R 2 + R22 + R~]Qt2AT 2 - 2CryL (3.22) 

R1 L1-L2 R~ * * = = L1-L2 

R 2 L 2 - L  3 R~ * * = = L 2 - L  3 

R3 L3-LI  R~ * * = = L3-L1 (3.23) 

For the case of a transversely isotropic composite 
(a 3-D axisymmetric MSEC or a 2-D in-plane random 
MSFC), Equation3.21 reduces to: 

ap t = aVL --  (L3 - -  L1)TAT (3.24) 
c *  - c *  

Equation 3.24, however, does not imply that the plas- 
tic strain is the same for the 3-D axisymmetric and 2-D 
in-plane random MSFCs as the values of Li and 
L* (which are functions of the material properties and 

the geometry of the composite) will differ in each case. 
With the plastic strain, e PL (thus e PL) known, the 

residual stresses in the matrix at TL are given by the 
sum of Equations 3.12 and 3.19. The average stresses 
in the fibre can then be found from the requirement of 
self equilibrium, Equation 3.9. 

4. De fo rmat ion  of  short-fibre 
composites 

Thus far a general model has been developed to pre- 
dict the thermal stress state in a two-phase mis- 
oriented Short-fibre composite where the matrix is 
assumed to undergo elastic-plastic deformations. The 
immediate application of the present model is to the 
thermal residual stress that is developed in a com- 
posite, upon cooling from a high processing temper- 
ature to room temperature. In the subsequent 
sections, the proposed model is extended/applied to 
model the deformation of MSFCs under uniform tem- 
perature changes. Of particular engineering interest 
are the coefficients of thermal expansion in the elastic 
and elastic-plastic regimes. 

4.1. Coef f i c i en t s  of the rmal  e x p a n s i o n  
The model that has been developed is now used to 
determine the coefficients of thermal expansion 
(CTEs) in the elastic and elastic-plastic regimes of 
a MSFC. It is noted that the results obtained for the 
elastic CTE have been previously obtained by Takao 
[14] but are included within the framework of the 
present model for completeness. 

The effective CTE of a composite, ae, is defined as: 

7D 1 1 f e tota ldV 
ae - A T -  A T  VD o 

(4.1) 

where 7D is the average macroscopic strain in the 
composite, e t~ is the total strain, and it is assumed 
that no initial strain exists. In the elastic case, after use 
of Equations 3.4 and 3.8 and some manipulation, 
7 E (the average macroscopic elastic strain) can be 
expressed as: 

1 fne,EdV+ ~mAT (4.2) 

In Equation 4.2 e *E = Z" e *E' and is obtained by solv- 
ing for e *E' from Equations 3.4 and 3.8 and then 
transforming the result to global coordinates. The 
integral in Equation 4.2 is then evaluated in the same 
manner as that in 3.5. The composite elastic CTE is 
then obtained upon substitution of Equation 4.2 into 
4.1. For the case of an aligned short-fibre composite, 
Equation 4.2 can be expressed as: 

Tg = f e*E + ~mAT (4.3) 

which agrees with the result obtained by Takao 
& Taya [15]. 

After the matrix yields, Equation 4.1 can still be 
used to compute the composite CTE; however the 
average macroscopic strain in the elastic-plastic re- 
gime, 7D, is different as the total strain changes due to 
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the plastic relaxation. Following reasoning similar to 
that used to find ~,~, the macroscopic strain due 

to uniform plastic deformations, y~, is obtained as: 

7g -- ~ e*PdV+ ePL (4.4) 

The quantity e e~ in Equation 4.4 is the average uni- 
form plastic strain in the matrix, and is obtained by 
transforming e ~ '  to global coordinates and then aver- 
aging over all possible fibre orientations to yield: 

1 
ePL --  q/i" 0 "  epL' (4.5) 

where ~ and Q are given in Appendix A. Substitution 
of Equations 4.4 and 4.5, and the temperature change 
in the elastic-plastic regime ( A T -  AT,) into Equa- 
tion 4.1, yields the composite thermal expansion due 
to plastic deformations. 

5. Results and discussion 
In this section, numerical results obtained from the 

proposed model are presented for typical metal matrix 
composites of engineering interest. Material proper- 
ties used in all computations are shown in Table I 

T A B L E  I Material properties of composite constituents used in 
calculations 

E CTE OyL/Te 
(OPa) v ( x 1 0 - 6 ~  -1 ) (MPa)/(~ 

Matrix 
materials 

2124A1 
Cu 

Fibre 
materials 

SiC 
Tungsten 

67.6 0.33 24.7 50.8/20 
124.0 0.34 17.6 39.2/20 

427.1 0.17 4.3 
358.0 0.285 4.75 

0.004 

[19, 23]. The computations in Figs 3-6 are for a short- 
fibre composite with 3-D axisymmetric misorienta- 
tion, while those in Figs 7-11 are for one with 2-D 
inplane misorientation. 

Figs 3 and 4 illustrate the effect of fibre volume 
fraction on the thermal residual stress state for a given 
set of geometric parameters and a temperature change 
of AT = - 200 ~ Both Figs 3 and 4 show the rela- 
tionship of the average matrix stresses normalized by 
Young's modulus of the matrix, (~m/Em, for a given 
aspect ratio and cut-off angle. In Fig. 3, the cut-off 
angle is set at n/2, while in Fig. 4, it is set to rt/3. The 
aspect ratio, ~, is set to ~ = 5 for both figures. In each 
figure, two types of distribution functions are investig- 
ated, uniform (solid lines) and cosine type (dashed 
lines). In the following discussion, the superscripts 
u and c denote stress components based on uniform 

0.004 
~0  

O3 
t- 

0 >- 
> ,  
r ~  

X - r -  

m 

0.003 . -" 

~5 0.002 

0.001 

0.000 i T l 
0.0 0.1 0.2 0.3 0.4 

Fibre volume fraction, f 

Figure 4 Variation of the normalized thermal residual stress in the 
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and cosine-type distributions, respectively. In the fol- ~ 
lowing discussion, the symbol g is used to represent x~ 
the volume averaged stress quantity and has the same 
meaning as (g ) .  Both Figs 3 and 4 show that all three .~ .=x 
stress components increase with increasing volume E E 
fraction of fibre, f It should also be noted that o ~6 
the dependence of tr on f is relatively linear up to �9 = 
f ~  10%. Fig. 3 shows that an isotropic state of stress ~ "~ 
exists for a uniform distribution with 13 = n/2, i.e. 
( Y ~  1 = ( Y ~ 2  = O'~3, as shown by the solid line. This case E 
corresponds to a completely random 3-D composite. 
For a cosine-type distribution at [3 = ~/2, more fibres �9 
are aligned along the x3-axis, thus the composite sys- 
tem is not isotropic and the axial stress (r is larger 
than the transverse stresses ( o ~  = o22), as shown by 
the dashed curves. This is also the case in Fig. 4 and is 
true for any cut-off angle. Both Figs 3 and 4 show that 
for a given cut-off angle, in these cases n/2 and re/3, 
respectively, the fibre volume fraction has a much 
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Figure 10 Variation of the normalized thermal residual stress in the 
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greater effect on all three stress components than the 
fibre orientation distribution type. The effect of fibre 
orientation distribution type, however, increases with 
increasing f It should also be noted that as f ~  0, 
( ~ ) m  ~ 0 which corresponds to a dilute suspension of 
fibres such that when averaged over the infinite do- 
main, the disturbance stress in the matrix vanishes. 
The stresses in the fibre approach that obtained from 
Eshelby's solution [1] for a single inhomogeneity in 
an infinite elastic medium. 

Fig. 5 shows the dependence of the average stress in 
the matrix normalized by Young's modulus of the 
m a t r i x ,  (~)m/Em, on the fibre-cut-off angle 13 where 
the aspect ratio (c~ = 5) and fibre volume fraction 
( f  = 0.4) are fixed. Again, both uniform (solid lines) 
and cosine-type (dashed lines) distributions are con- 
sidered. At 13 = ~/2 for a uniform distribution, all 
stress components coincide, i.e. 0-]1 = 0"~2 = 0"~3, 
thus a completely isotropic composite, and for a co- 
sine type distribution, 0"~3 > 0"Ix = 0"~2, as explained 
in the preceding section. It is noted that 0"~3 ~ 0"~3 
and is approximately constant up to 13 ~ re/6. Over 
this span, however, 0"11 = 0"22 does increase slightly. 
For  the case where 13 --* 0, tr" = g~ and these results 
coincide with the solution for an aligned short-fibre 
composite [10]. As Fig. 5 shows, the effect of fibre 
distribution type increases as the degree of fibre mis- 
orientation increases, i.e. as 13 increases. It can thus be 
concluded that an accurate assessment of the distribu- 
tion type may not be necessary at lower values of the 
cut-off angle, and even that the simple solution for an 
aligned short-fibre composite may be acceptable for 
small degrees of misorientation. At larger values of 13, 
however, it is apparent that both of these parameters 
significantly effect the thermal residual stress state and 
should be considered. 

The effect of fibre aspect ratio, ~, on the average 
matrix stress is shown in Fig. 6, where 13 = n/3 and 
f =  0.4. Fig. 6 shows that 0-33 increases rapidly with 

at low aspect ratios, but becomes saturated at 
-~ 30. This phenomenon is observed with both uni- 
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form and cosine-type distributions, however, the co- 
sine-type distribution tends to become saturated at 
slightly lower values of ~. The other stress compo- 
nents, 0-11 = 0-22, also increase more rapidly with ct at 
lower values of ~ and become saturated at ~ ,~ 30. 
Here, though, o]1 = 0-~2 is much less than o~1 = 0-~2 

as it becomes saturated. As Qt -~ 1 (spherical filler), all 
stress components for both types of distribution func- 
tions are equal and they coincide with the solution 
given by Taya et aL [5]. 

In Fig. 7, the normalized critical temperature 
change required to initiate uniform yielding of the 
matrix is studied for two 2-D SiC/A1 MSFCs with 
distribution cut-off angles of 13 = 0 and [3 = re/2. These 
two cut-off angles correspond to an aligned short-fibre 
composite and a 2-D in-plane random short-fibre 
composite, respectively. These two cases thus bound 
A0~ATor for all 13, i.e. for all 2-D in-plane MSFCs, with 
all other parameters held constant. In Fig. 7, the dif- 
ference between the two curves can be considered the 
variability in the range of completely elastic response 
(to the thermal loading) for a 2-D MSFC. It is seen 
that the effect of misoriented fibres (in-plane) increases 
the range of elastic response to thermal loading of the 
composite. This is of course at the expense of a de- 
creased axial stiffness. It is seen, however, that the 
increased range of elastic response decreases rapidly 
with increasing fibre volume fraction. In fact at large 
volume fractions ( f ,~  0.5) the effect of misoriented 
fibres on the range of elastic response is so small 
( ~ 31 ~ that it is probably insignificant for practical 
applications. 

The normalized residual stresses for both the elastic 
and elastic-plastic models for a random 2-D in-plane 
MSFC (13 = re/2, thus 0-22 = 0"33 ;;~ 0"11) are shown in 
Fig. 8. The in-plane stresses are affected much more 
than the out of plane stress. The yield condition of 
Equation 3.14 is seen to be satisfied after yield as the 
difference between the curves 0"EP = 0"EP and 0"E~ is 
constant and equal to the normalized yield strength of 
the matrix. 

In Fig. 9, the effect of fibre geometry (aspect ratio) 
on the magnitude of elastic and elastic-plastic thermal 
residual stresses is investigated for a SiC/A1 MSFC. 
Although after yielding the magnitude of the flow 
stress is constant, the magnitude of the hydrostatic 
stress is still important in some instances. For example 
in thermal stress finite element codes, the accuracy of 
a stress solution is a percentage of the magnitude of 
the total stress and can thus be very large when large 
hydrostatic stress components exist. At low aspect 
ratios, 0"3E3 and o EP increase rapidly, but then remain 
approximately constant as the composite becomes 
saturated at ~ ~ 30. At aspect ratios greater  than 
0~ ~ 30, the composite essentially behaves as one rein- 
forced by continuous fibres (at -+ oo ). In both the elas- 
tic and elastic-plastic cases, 0-11 and 0-22 are less 
sensitive to ~ than 0-33- As u --, 1, all stress compo- 
nents coincide and reduce to the result given by Taya 
et al. [3] for a particulate reinforced composite. In this 
case, relaxation due to uniform plastic flow of the 
matrix is energetically unfeasible, as the average 
matrix stress state is hydrostatic due to the isotropic 



reinforcement. However, localized yielding will occur 
in reality and this is not accounted for in the present 
model. 

Fig. 10 shows the normalized matrix stress versus 
the cut-off angle for a case when A~AT > A~ATcR for 
all 13, i.e. the CTE mismatch is large enough to cause 
uniform yielding of the matrix for all [3. Again, results 
for both the elastic (solid lines) and elastic-plastic 
(dashed lines) models are shown. It is seen that the 
relaxation due to plastic flow results in a decrease in 

EP and an increase in 0-11 0-33 EP for all [3 relative to the 
elastic results. For  this case, plastic flow results in an 
increase in 0-22EP for the range of smaller 13, then an 
increase in 0-22EP for larger [3 (relative to the elastic 
results). This phenomenon is again a result of the 
requirement of volume constancy of the matrix. 
Fig. 10 also shows that 0-22 = 0-33 =~ 0-11 for 13 = ~/2 
(in-plane random MSFC) and 0-~1 = 0 2 2  • 0-33 for 
13 = 0 (aligned SFC). Note that the elastic plastic 
model predicts that EP and EP it  0-33 are approximately 
constant over the entire range of [3. However, as 0-3E3 is 
not approximately constant over the range of [3, the 
inelastic strain e p is also not approximately constant 
over the range of [3. Thus, although the total residual 
stress predicted by the elastic-plastic model is nearly 
independent of [3, the relaxation due to plastic flow 
that occurs to produce the final residual stress is 
dependent on [3. It is important to recognize this fact 
in the case of a deformation analysis such as that of 
dimensional change of a composite due to thermal 
cycling. 

Finally, with regard to the deformation of short- 
fibre composites, the axial thermal expansion coeffi- 
cients (CTEs) of a 2-D W/Cu MSFC in both the elastic 
and elastic-plastic ranges are examined in Fig. 11. 
Three cases are considered: an aligned continuous 
fibre composite, an aligned short-fibre composite, and 
a 2-D in-plane random short-fibre composite. It is 
seen that the discontinuous reinforcement results in 
a composite that is more expansive as the large CTE 
of the matrix plays a more significant role. For both 
the aligned continuous and short-fibre composites, the 
elastic-pastic CTE is much smaller than the elastic 
CTE and can be approximated to the first order by the 
CTE of the fibre. This first order approximation can 
be formally obtained by neglecting the Poisson con- 
traction of the composite in the transverse direction 
[-27]. It is also evident from Fig. 11 that the effect of 
misoriented fibres on the axial CTE of the composite 
is much larger in the elastic-plastic range than in the 
elastic range. Fig. 11, however, does not completely 
describe the thermal expansion behaviour of 2-D 
MSFCs as expansions in the transverse and thickness 
directions, which are readily computed with the pres- 
ent model, must certainly be considered in practice. It 
should be noted that the result for the axial CTEs for 
the continuous fibre composite in Fig. 11 agrees with 
that of Wakashima et al. 1-19] which was derived by 
the minimization of free energy approach. 

6. Conclusion 
A micromechanics model has been proposed to ana- 
lyse residual stresses and deformations that develop in 

short-fibre composites upon an applied uniform tem- 
perature change. The model is based on Eshelby's 
equivalent inclusion method and treats the interaction 
among fibres at finite volume fractions through the 
Mori -Tanaka mean field theory. The model treats the 
matrix as an elastic/plastic material while the fibre is 
elastic. The model is able to account for the effects of 
misoriented short fibres, the orientations of which are 
described by a density distribution function. Uniform 
and cosine-type distribution functions are used to 
simulate actual distributions of misoriented fibres. 
Based on the numerical results above, it is seen that 
the misorientation of short fibres has a significant 
effect on both the stress and deformation behaviour of 
short-fibre composites. Misoriented short fibres can 
increase the range of thermoelastic response of a short 
fibre composite; however, this is at the expense of 
a reduced elastic stiffness. 
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A p p e n d i x  ~ a n d  P a n d  Q m a t r i c e s  
For 2-D in-plane misorientation 4 i, P, and Q are 
given by Taya et al. [13]. For 3-D axisymmetric mis- 
orientation, 4 i are given by: 

4" = 1 - cos15 

4o 1Fcos(a_~ !)_15 - 1 cos(a + 1)13 - 11 
= 2[_ a - 1 - a4--1 (A1) 

The explicit forms of the non-zero elements of P and 
Q for both uniform and cosine-type density distribu- 
tion functions are: 

Pl l  = 3JAi l (Co  +C4)-k-A33S4-q-(A13 + A a l ) C 5  

+ 1A44S3] q--~ [(2A12 + 2A66)C2 

+ (AI3 + A31 + 2A44)$2] 

P12 = ~ [Al l (Co  -b C4.) 4- A33S 4 q- (A13 4- A31)C 5 

+ �89 + 8fi[(2A12 - 2 A 6 6 ) C  2 

Jr- (A13 + A31 - ~3A44)82] 

P13 = �89 -{- C4) + A31S4 -{- A12S2 

-F (All  -b A33)C 5 - �89 

P31 = �89 + C4) + A13S4 + A12S2 

+ ( A l l  + A33)C5 -- �89 

P33 = A l l S 4  + A33C4 + (A13 + A31)C5 + �89 

P44 = �89 -k- C3) -k- A66S 2 

+ {(Al l  -- A13 - A31 + A33)S3] 

� 8 9  -- P12] (A2) P66 

and 
Q l l  = �89 

Q12 = �89 

Q13 = �89 

Q15 =�89  

Q31 = 82 

Q33 = c2 

Q35 = -- $5 (A3) 

where A u is defined in Equation 3.7 and the symmetry 
of A u has been used. The S~ and Ci items are depend- 
ent on the fibre distribution function and cut-off angle. 
For a uniform distribution, they are given by: 

C o = l - c o s 1 5  

1 - cos315 
C a - 

3 

~ [  c~ COS515 141 
c 3 =  -cos15+ ~ i~ + ] 3  

1 -- c0s515 
C 4 -  

5 

cos [ sin2  2 2 l 
C5 = ~ - -  sin415 3 3 + ~ - ~  

1 
$2 = - ~ [9 cos15 - cos315 - 8] 

1 [  c0s315 c0s513 161 
s~ = ~ - cos15 - ~ -  + ~ + i~ 

cos15 [ 4sin213 8 8 1 
$ 4 = ~  -sing15 3 3 + 

$5 = ~[sin15 si3315 ] (A4) 

For a cosine-type distribution, Ci and Si are given by: 

where: 

E 1 = 

E 3 -  

E 5 

Co = �89 

C2 = ~[E1 + E3] 

C 3 = � 8 8  I - -  �89 3 -'[- � 8 9  

C 4 = ,16[E 1 + 3E 3 .q- �89 

$2 = ~[3E1 - E3] 

s~ = �88 + �89 - �89 

s,  = ~ [ 5 e ,  - {E3 + kEs] 

Ss = �88 - E9] 

cos(a - 1)15 - 1 cos(a + 1)15 - 1 
a - 1  a + l  

cos(a - 3)15 - 1 cos(a + 3)13 - 1 
m 

a - 3  a + 3  

cos(a - 5)13 - 1 cos(a + 5)13 - 1 
a - 5  a + 5  

sin(a - 1)13 sin(a + 1)15 
E 7 -- + 

a - 1  a + l  

sin(a - 3)15 sin(a + 3)15 
E 9 - -k- 

a - 3  a + 3  

(AS) 

(A6) 

where 13 is the cut-off angle. 
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